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Abstract

A conservative method of level set type for moving interfaces in divergence free velocity fields is presented. The inter-

face is represented implicitly by the 0.5 level set of a function U being a smeared out Heaviside function, i.e., a function

being zero on one side of the interface and one on the other. In a transition layer of finite, constant thickness U goes

smoothly from zero to one. The interface is moved implicitly by the advection of U, which is split into two steps. First U
is advected using a standard numerical method. Then an intermediate step is performed to make sure that the smooth

profile of U and the thickness of the transition layer is preserved. Both these steps are performed using conservative

second order approximations and thus conserving �U. In this way good conservation of the area bounded by the 0.5

contour of U is obtained.

Numerical tests shows up to second order accuracy and very good conservation of the area bounded by the interface.

The method was also coupled to a Navier–Stokes solver for incompressible two phase flow with surface tension.

Results with and without topological changes are presented.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Problems involving moving boundaries and interfaces exist in a wide range of applications, such as

multi-phase flow, crystal growth, image processing, front propagations, fluid–structure interactions,

etc. Different ways to simulate these problems have been developed. Some of the more commonly

used are front tracking methods and level set methods and for incompressible flows volume of fluid

methods.
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In the simulation of incompressible two phase flow volume of fluid (VOF) methods have been used

extensively. In these methods, the interface is given implicitly by a color function, defined to be the fraction

of volume within each cell of one of the fluids. From the color function, a reconstruction of the interface is

made and the interface is then propagated implicitly by updating the color function. VOF methods are con-

servative and can deal with topological changes of the interface. However, they are often rather inaccurate,
high order of accuracy is hard to achieve because of the discontinuity of the color function. As far as we

know, no advection scheme for the volume of fluid method has order higher than two. Also, properties of

the interface such as normal and curvature are hard to calculate accurately. Still, the good conservation

properties are attractive and quite sophisticated methods have been developed. For one of the early work

on VOF, we refer to Noh and Woodward [1] and for a review of this type of methods to Scardovelli and

Zaleski [2].

Another approach for free boundary problems is to track the boundary explicitly by markers distributed

evenly on the interface, and then propagate the markers. In this way the interface can be represented shar-
ply. This type of methods are often referred to as front tracking methods. Markers may however move close

together or far apart, making redistribution of markers necessary. Special care has to be taken to topolog-

ical changes. Also, if the markers move independently of each other, oscillations in the interface may occur.

Another difficulty is the interaction of the interface with a fixed Eulerian grid, which is often needed. All

these features makes front tracking methods hard to implement for a general case. A method to simulate

multi-fluid flows using front tracking is described in [3].

Lately, level set methods have become popular and have been used in a large variety of applications such

as compressible and incompressible two phase flow, image processing and flame propagation, just to men-
tion a few. General descriptions of level set methods can be found in [4,5] and applications to two phase

flow in [6,7]. In general, the interface is represented by the zero contour of a signed distance function,

the level set function. The movement of the interface is governed by a differential equation for the level

set function. The advection is in general done by (weighted) essentially non-oscillatory (WENO, ENO)

methods. To keep the level set function a signed distance function, a reinitialization process is needed. Also

this process is governed by a differential equation. Level set methods automatically deal with topological

changes and it is in general easy to obtain high order of accuracy, just by picking an ENO or WENO

scheme with the desired order of accuracy.
One of the drawbacks of level set methods is that they are not conservative. For incompressible two

phase flow, loss or gain of mass might occur, which is physically incorrect. The poor mass conserva-

tion of level set methods in a finite element framework compared to front tracking methods was

pointed out in [8]. Several attempts to improve mass conservation of level set methods have been

done. In [9], a combination of the level set method and the VOF method was used in order to obtain

the good mass conservation of the VOF method, but using a level set function to obtain better

approximations of the curvature. A color function is needed and has to be advected, as in standard

volume of fluid schemes. Since this function is discontinuous across the interface special care has to be
taken when advecting this function. Due to this, it might be hard to obtain advection schemes of

order higher than two without introducing oscillations. The simplicity of the original level set methods

is also lost. The problem of mass conservation of level set methods was also addressed in [10]. The

authors there propose a hybrid level set – marker particles method to improve accuracy, in particular

in underresolved regions. However, in both these cases the original simplicity of level set methods is

partly lost.

Our goal is to find an alternative level set function, together with an advection scheme, resulting in con-

servation of the area (volume in 3 dimensions) bounded by the interface. The velocity field is assumed to be
divergence free. To achieve our goal, we use a smeared out Heaviside function as the level set function, i.e.,

a function being zero in one fluid and one in the other. Over the interface it varies smoothly from zero to

one. The advection of the level set function is performed using a conservative scheme with an intermediate
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step that keeps the shape and width of the profile across the interface constant. Furthermore, our level set

function will be smooth, which makes our method easy to extend to higher order, as opposed to the dis-

continuous color function.
2. Choice of level set function

In standard level set methods, the level set function U is defined to be a signed distance function
jUð~xÞj ¼ dð~xÞ ¼ min
xI2I

ðj~x�~xI jÞ;
where I is the interface, Uð~xÞ > 0 on one side of the interface and Uð~xÞ < 0 on the other. The advection of U,
including a reinitialization step to retain U as a distance function, is not done in a conservative way, not

even for divergence free velocity fields. This implies that the area bounded by the zero level set is not con-

served. This is one of the drawbacks of level set methods.

To represent density and viscosity discontinuities over the interface the Heaviside function:
HðUÞ ¼ 0; U < 0;

HðUÞ ¼ 1; U > 0
is needed. In computations, to achieve numerical robustness, a smeared out Heaviside is often used. For

example
H smðUÞ ¼
0; U < ��;
1
2
þ U

2�
þ 1

2p sin
pU
�

� �
; �� 6 U 6 �;

1; U > �;

8><>: ð1Þ
where � corresponds to half the thickness of the interface.

If we could instead choose
eUð~xÞ ¼ H smðUð~xÞÞ;
we would not have to calculate Hsm from U. More important, assume we have a conservative numerical
method to advect eUð~xÞ that preserves the smooth profile of eUð~xÞ. Since the method is conservative �U will

be conserved exactly. This implies that we can also expect good conservation of AeU¼0.5
, the area bounded byeU ¼ 0.5, since AeU¼0.5

�
R
U. If we would use the sharp Heaviside, we would preserve the area exactly. How-

ever, on a discrete grid, the position of the interface is better approximated by the level set of a smooth

function. The interface thickness should therefore typically depend on the grid size, so that the smooth pro-

file can be resolved by the grid.

We can also choose to either define a sharp interface at eUð~xÞ ¼ 0.5 or a diffuse interface for

0 < eUð~xÞ < 1. In the following, we will refer to our choice of level set function as the phase field function,
denoted U.

Normals and curvatures can easily be obtained from our phase field function as:
n̂ ¼ rU
jrUj ;

j ¼ �r � rU
jrUj

� �
.
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3. Advection of the phase field function

3.1. Advective step

We now turn to the problem of finding a method to advect U that is conservative and that does not
change the profile of U at the interface.

Assume the interface is advected with a given velocity field ~u. This corresponds to the following simple

ordinary differential equation for every point~x on the interface
d~x
dt

¼~uð~xÞ. ð2Þ
As in standard level set methods we can instead solve
Ut þ~u � rU ¼ 0 ð3Þ
on the entire domain. This will move the 0.5 level set of U according to (2). For incompressible flow, ~u is

always divergence free, i.e., r �~u ¼ 0. Eq. (3) is then equivalent to the conservation law
Ut þr � ðU~uÞ ¼ 0.
When choosing a suitable numerical method to solve this one has to consider:

� The method should be conservative.

� No spurious oscillations should be introduced.

� The thickness of the interface and the profile of U should be kept constant.

Using a uniform grid, we define grid points ~xi;j ¼ ðxi; yiÞ ¼ ðx0 þ iDx; y0 þ jDyÞ and a grid function
Ui;j � Uð~xi;jÞ. The velocity, ~u ¼ ðu; vÞ is assumed to be given on a staggered grid, i.e., u on grid points
~xiþ1

2
;j and v on~xi;jþ1

2
. Conservative methods can be written on the form
dUi;j

dt
¼ � 1

Dx
ðF iþ1

2
;j � F i�1

2
;jÞ �

1

Dy
ðGi;jþ1

2
� Gi;j�1

2
Þ; ð4Þ
where F iþ1
2
;j and Gi;jþ1

2
approximates the flux ðF ;GÞ ¼ U~u on the staggered grid. Calculating fluxes using

centered averaging,
F iþ1
2
;j ¼ 0.5ðUi;j þ Uiþ1;jÞuiþ1

2
;j; Giþ1

2
;j ¼ 0.5ðUi;j þ Ui;jþ1Þvi;jþ1

2
ð5Þ
will typically introduce oscillations close to the interface. This can be seen in Fig. 1(b), which shows results

after only a few time steps.

A large amount of work on TVD (total variation diminishing) methods has been done, see [11]. These

methods approximate conservation laws without introducing oscillations near discontinuities. Linear TVD

methods will however smear discontinuities. A suitable method for the advection of our phase field function
would thus be a non-linear TVD method that does not smear discontinuities.

A typical TVD method uses an upwind scheme together with a piecewise linear reconstruction of U. A
limiter has to be chosen to determine how the linear reconstruction is made. In time a conservative explicit

second order Runge–Kutta discretization can be used. A more detailed description of this method is given

in Appendix A. Results using different limiters, i.e., different Lim(x,y) in (A.1), are shown in Fig. 1(c)–(f).

Here, a rotating velocity field (u,v) = (y,�x) was used. The figures show the result after one full revolution

so that the initial state should be recovered exactly. We used the minmod, van Albada, van Leer and the

Superbee limiter. Among TVD schemes, the ones using the Superbee limiter are well known to be the least
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Fig. 1. 0.05, 0.5 and 0.95 Contours of U initially and after one revolution using different numerical methods. (c)–(f) are s nd order TVD methods, (b) is second order

but not TVD. (a) Initial state; (b) centered differences; (c) upwind with Minmod; (d) upwind with Van Albada; (e) upw with Van Leer; (f) upwind with Superbee.
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diffusive, i.e., which will produce the least smearing. It is also clear from Fig. 1(c)–(f) that this limiter pre-

serves the thickness of the interface better than the other limiters.

3.2. Intermediate step

Not even with the Superbee limiter (Fig. 1(f)), the profile and thickness of the interface remains constant.

Also, the shape of the profile seems to depend on the normal of the interface relative the direction of mo-

tion. To solve this problem, we add an intermediate step after each time step that will make sure that the

interface keeps its thickness and shape. As originally proposed by Harten [12] it is possible to add artificial

compression in order to maintain the resolution of contact discontinuities. This can be viewed as an inter-

mediate step where one is solving the conservation law
Us þr �~f ðUÞ ¼ 0; ð6Þ
where ~f corresponds to the compressive flux. In our case, we want the artificial compression flux to act in

regions where 0 < U < 1 and in the normal direction of the interface. To achieve this, we choose
~f ¼ Uð1� UÞn̂, where n̂ is the normal of the interface. We denote the time variable by s to stress that this

is an artificial time, not equivalent to the actual time t. We note that (6) is a hyperbolic differential equation.

As s increases, stationary shocks will develop at the interfaces.
To avoid discontinuities at the interface, we add a small amount of viscosity, i.e., we modify the conser-

vation law by
Us þr �~f ðUÞ ¼ eDU ð7Þ
or in conservative form
Us þr � ~f ðUÞ ¼ 0 ð8Þ
with
~f ðUÞ ¼ ~f ðUÞ � erU.
By solving (8) to steady-state the interface thickness will remain constant and proportional to e.
This can be approximated in space by
dUi;j

ds
¼ � 1

Dx
ðF iþ1=2;j � F i�1=2;jÞ �

1

Dy
ðGi;jþ1=2 � Gi;j�1=2Þ; ð9Þ
where F and G is the numerical flux at cell faces. We choose:
F iþ1=2;j ¼
f ðUi;jÞ þ f ðUiþ1;jÞ

2
� e

Uiþ1;j � Ui;j

Dx
;

Gi;jþ1=2 ¼
gðUi;jÞ þ gðUi;jþ1Þ

2
� e

Ui;jþ1 � Ui;j

Dy
with f and g being the x and y components of~f . The interface normal n̂ ¼ rU=jrUj is approximated using

centered differences:
ðrUÞi;j ¼
Uiþ1;j � Ui�1;j

2Dx
x̂þ Ui;jþ1 � Ui;j�1

2Dy
ŷ;

n̂i;j ¼
ðrUÞi;j
jðrUÞi;jj

.
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n̂i;j is only calculated once in each intermediate step. That is, after each advection step, n̂i;j is calculated

and is then kept fixed until steady-state of (8) has been reached. In time we use the same Runge–Kutta

approximation as for the advection of U. The method obtained is second order accurate in space and

time.

Since we use explicit time stepping we get stability restrictions on Ds due to the viscous term, typically
Ds 6 C
ðDxÞ2

e
.

Experimentally, we found that stability was obtained by choosing C = 1/4. We choose e, which determines

the interface thickness, to depend on the grid size in the following way:
e ¼ ðDxÞ1�d

2
.

If d = 0, e and thus the width of the interface, will be proportional to Dx. In this case, the resolution of the

smooth interface profile will not increase under grid refinement. As will be seen later we do, however, obtain

second order accuracy even for d = 0 in a test calculation of a rotating circle. For a more complicated flow
field, as the vortex test in Section 5.2, we had to choose d > 0 to obtain convergence. However, a small va-

lue, d = 0.1, was enough. In all our calculations we have used
Ds ¼ ðDxÞ1þd

2
.

As a criteria for steady-state we used
Z
jUmþ1 � Umj < TOL � Ds
for some specified tolerance TOL. Numerical tests have shown that in practice only a few time steps have to

be performed in order to reach steady-state.

Results after one revolution using different methods for the advection together with the artificial com-

pression step are given in Fig. 2. It is clear that we get reasonable solutions for all the advection methods,

even the one using centered differences. The thickness of the interface is constant for each case.

3.3. Boundary and initial conditions on U

Appropriate boundary and initial conditions must also be assigned to U. In our calculations, we have

either used U = 0 on the boundaries or assumed the boundaries to be walls with a contact angle of

h = p. In the case of walls, on the boundaries
n̂ � n̂wall ¼ 0
should hold. Here n̂ is the normal of the interface and n̂wall is the normal of the wall. This can be trans-

formed to a homogeneous Neumann condition for U
n̂wall � rU ¼ 0.
At t = 0, U has to be initiated. One way to do this is to set U to one on one side of the interface and zero on
the other. Then (7) is solved numerically until a steady-state has been reached. The resulting function is

used as initial data for U. However, in certain cases the steady-state of (7) can be found analytically.

For steady-state, r �~f ðUÞ ¼ eDU should hold and the 0.5 contour of U should lie along the desired inter-

face. If
U ¼ 1þ eðj~x�~xc j�rÞ=e� ��1
;
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r �~f ðUÞ ¼ eDU is fulfilled for x 6¼ xc and the 0.5 contour of U corresponds to a circle centered in ~xc with
radius r. Correspondingly for a horizontal interface at y = yint we can set
U ¼ 1þ e y�yintð Þ=e� ��1
to both fulfill steady-state and obtain the 0.5 contour at y = yint.
4. Incompressible two phase flow

The next step is to couple our advection method for the phase field function with a two phase incom-

pressible flow solver. We use a diffuse interface model, where surface tension is transformed to a volume

force spread over a few layers of cells. The discontinuity in density and viscosity across the interface is also

smoothed out.

Surface tension per interfacial area at a point~xI on the interface is given by
~F sað~xIÞ ¼ rjð~xIÞn̂ð~xIÞ.

As in [13] choosing a volume force at any point~x as
~F svð~xÞ ¼ r �r � rU
jrUj

� �
rU
will result in the same total force as ~F sað~xIÞ, but spread over the finite interface width. Here, it becomes

important that the thickness of the transition layer is kept constant. ~F sv is equal to ~F sað~xIÞ only in the limit

when the thickness of the interface goes to zero. If the interface becomes wide ~F sv will not be a good

approximation of ~F sað~xIÞ . Therefore, the interface thickness should not become too wide. A too sharp tran-

sition, on the other hand, will yield difficulties in numerically computing ~F sv accurately, since up to second

order derivatives of U are needed.

The non-dimensionalized incompressible Navier–Stokes equations with surface tension and gravity are:
r �~u ¼ 0; ð10Þ

~ut þ ð~u � rÞ~u ¼ �rp
q

þ 1

qRe
r � l r~uþ ðr~uÞT

� �� �
þ 1

Fr2
~eg þ

1

qWe
eF sv; ð11Þ

Ut þ~u � rU ¼ 0; ð12Þ
where Re ¼ qrefuref lref
lref

is the Reynolds number, Fr ¼ urefffiffiffiffiffiffiffi
lrefg

p the Froude number, We ¼ qrefu
2
ref

lref
r the Weber num-

ber and eF sv ¼ ~F sv=r.~eg is the unit vector in the direction of gravitation, and q and l the non-dimension-

alized density and viscosity, respectively. The density and viscosity varies smoothly over the interface by

letting:
q ¼ q1 þ ðq2 � q1Þ � U;
l ¼ l1 þ ðl2 � l1Þ � U

ð13Þ
with q1, q2 and l1, l2 being the dimensionless densities and viscosities of the two fluids, respectively.

We use a staggered grid for the discretization, i.e., U and p are given at grid points~xi;j, whereas u is given

on~xiþ1=2;j and v on~xi;jþ1=2. Eqs. (10) and (11) are solved numerically using extensions of the Marker and Cell

method [14] (see Appendix B for a thorough description) together with our conservative shape preserving

advection scheme for the solution of (12). The pressure is updated implicitly by solving a Poisson equation
with variable coefficients. This linear system is solved by a direct banded solver. The velocity is then
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updated explicitly and finally U is advected with the calculated velocity. The method is second order accu-

rate in space and first order in time.

Note that since we use conservative schemes for updating Ui,j,
R
Ui;j ¼

P
Ui;jDxDy is conserved exactly.

Since we define the density by (13), also
R
qi;j ¼

P
qi;jDxDy will be conserved. Mass is thus conserved ex-

actly by our method.
5. Results

We tested our method on four different cases. First, two tests using our advection scheme for given diver-

gence free velocity fields were investigated. Convergence studies were performed, including estimates of or-

der of accuracy. Then, the advection was coupled to the Navier–Stokes solver described in Section 4 for the

case of a rising air bubble in water. Finally, a test case involving topological changes of the interface was
considered through a water droplet falling through air and then hitting a water surface.

In the two last simulations, the velocity component normal to the walls were set to zero on the boundary.

For the tangential component homogeneous Neumann conditions were used. Homogeneous Neumann

conditions were also used for U on all boundaries, i.e., a contact angle of p degrees. From these boundary

conditions and the Navier–Stokes equations, Neumann conditions on the pressure follows, op/ox = 0 on the

vertical boundaries and op/oy = q/Fr2 on the horizontal ones.

5.1. Rotating circle

To test our advection scheme a circle was rotated in the constant velocity field (u,v) = (y,�x). Solutions

on different grids after one revolution, i.e., at t = 2p, were compared. The viscosity parameter in (7) was set

to e = Dx/2, so that the thickness of the transition layer gets smaller and smaller as the mesh becomes finer.

Contour lines corresponding to U = 0.05, 0.5 and 0.95 of the solutions at t = 2p on four different grids,

Dx = 0.08, 0.04, 0.02 and 0.01, with Dt = Ds = Dx/2 are shown in Fig. 3(a). Four artificial compression steps

were performed after each time step. On the boundary we used U = 0.

The conservation of the area within the 0.5 contour is shown in Fig. 3(b). Even though there is a small
variation of the area, there is no drift, i.e., the maximum deviation from the initial area does not increase
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Fig. 3. Results on the different grids, upwind scheme with Superbee: (a) contour lines corresponding to U = 0.05, U = 0.5 and U = 0.95

at t = 2p; (b) area conservation.
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with time. On the coarsest grid we get a maximum deviation less than 0.5% and on the finest only 0.035%.

The difference in initial area for the different grids is due to the discretization error of the initial U. Clearly
from the result this error is of order (Dx)2.

From the result, we estimated the order of accuracy with respect to the position of the circle and with

respect to the error measured by
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area co
Z
jHðUnumericalÞ � HðUexactÞj=L ð14Þ
as was done in [7], where:
HðUÞ ¼ 0; U < 0.5; ð15Þ
HðUÞ ¼ 1; U > 0.5 ð16Þ
and L the perimeter size. In this way, we can measure the error of the sharp interface defined by U = 0.5.

The position of the bubble was defined by the center of mass:
X center ¼
P

i;jUi;j � xiP
i;jUi;j

; Y center ¼
P

i;jUi;j � yjP
i;jUi;j

.

Calculated orders of accuracy are shown in the following table:
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In the previous calculations, we used the upwind scheme together with the piecewise linear reconstruc-

tion defined by the Superbee limiter. Exactly the same calculations were also done using the central scheme,

i.e., (4) with (5). The obtained results are shown in Fig. 4(a) and (b).

The result is very similar to the result obtained with the Superbee scheme. Contours corresponding to the

0.5 level set of U are shown for each method in Fig. 5(a) and (b).
The following orders of accuracy were obtained:
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Order (x-pos)
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 1.9
We thus obtain higher order of accuracy for the central scheme, even though on the coarsest grid, the

upwind scheme performs better.

5.2. Vortex test

To test our advection scheme on a more complicated flow, we used the following velocity field on the

unit square:
u ¼ sin2ðpxÞ sinð2pyÞ;
v ¼ �sin2ðpyÞ sinð2pxÞ.
A circle with radius 0.15 centered at (0.5,0.75) was used as initial condition. At t = T the flow field was

reversed, so that the exact solution at t = 2T should coincide with the initial condition. To obtain conver-

gence, we had to choose e = (Dx)0.9/2. Computations on four grids (322, 642, 1282, 2562) were performed for
0.6 0.7

central scheme.
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T = 1 and T = 0.5. The solution for T = 1 at t = 0, t = 0.5, t = 1 and t = 2 are shown in Fig. 6. The conser-

vation of the area bounded by the 0.5 contour, T = 1, is given in Fig. 7(a) and the 0.5 contours of U at t = 2

in Fig. 7(b). The corresponding results for T = 0.5 are shown in Fig. 8(a) and (b).

The results can be compared with results using standard level set methodwith reinitialization, see Figs. 9(a)

and (b) and 10(a) and (b). Second order ENO schemeswere used for both advection and reinitialization, cf. [6].
In Fig. 6, we note a pinch off as the thickness of the stretched circle gets close to the thickness of the

interface. This is a numerical effect that can only be avoided if the thickness of the interface is smaller than

the distance between two interfaces. We also note from Fig. 7(a) that this pinch off results in a small tem-

porary mass loss. This mass loss is however small compared to the standard level set method, and the mass

is recovered at t = 2T. For T = 0.5, the interface remains well resolved and the mass conservation is very

good (Fig. 8(a)). Our method is clearly better with respect to mass conservation compared to the standard

method. (Note the difference in scaling in Figs. 7(a), 9(a), 8(a) and 10(a).) This holds independently of

whether the interface is well resolved or not.
As for the rotating bubble in previous section, we estimate the order of accuracy at t = 2T with respect to

the error defined by (14):
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Fig. 7. Vortex test on four different grids, T = 1, using our method: (a) area conservation; (b) t = 2, 0.5 contour of U.

0 0.2 0.4 0.6 0.8 1
0.0696

0.07

0.0704

0.0708

t

ar
ea

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.6

0.65

0.7

0.75

0.8

0.85

0.9

(a)
(b)

Fig. 8. Vortex test on four different grids, T = 0.5, using our method: (a) area conservation; (b) t = 1, 0.5 contour of U.
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Finally, we performed a non-reversed simulation on the finest grid until t = 4. The solution at t = 1, t = 2,

t = 3 and t = 4 is shown in Fig. 11. Clearly, the grid is not fine enough to resolve the interface.
5.3. Rising bubble

An air bubble in water initially at rest was studied. The reference density and viscosity was set to the

density and viscosity of water: qref = 1.0 · 103 kg/m3, lref = 1.0 · 10�3 N s/m2 so that q1 = 1, q2 = 0.0013,

l1 = 1, and l2 = 0.016. Letting r = 7.3 · 10�2 N/m, lref = 5.0 · 10�3 m and uref = 0.1 m/s, we obtain

Re = 500, Fr = 0.45 and We = 0.68. Again, the interface thickness was determined by e = (Dx)0.9/2. We

chose the time step by stability with respect to viscous and convective terms
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Fig. 9. Vortex test on four different grids, T = 1, using standard level set methods: (a) area conservation; (b) t = 2, 0 contour of U.
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Fig. 10. Vortex test on four different grids, T = 0.5, using standard level set methods: (a) area conservation; (b) t = 2, 0 contour of U.
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Dt ¼ 1
maxðjujÞ

Dx
þmaxðjvjÞ

Dy
þ 4

minðq � Re=lÞ
1

ðDxÞ2
þ 1

ðDyÞ2

 ! !,
. ð17Þ
Results at t = 0.5 on the different grids, Dx = 2/25, Dx = 2/50, Dx = 2/100 and Dx = 2/200 are shown in Fig.
12. The time evolution of the area bounded by the 0.5 contour of U is shown in Fig. 13(a). The conservation

is obviously very good. Even on the coarsest grid the area fluctuation is only about 0.1%. As in the other
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Fig. 13. Velocity of center of mass of bubble and area of region bounded by U = 0.5: (a) area conservation; (b) velocities.
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tests, the difference in initial area is due to the discretization error of the initial U. The velocity of center of

mass is shown in Fig. 13(b) and the 0.5 contours of U in Fig. 14. The solid line corresponds to Dx = 2/200,

the dashed to Dx = 2/100, the dashed-dotted to Dx = 2/50 and the dotted line to Dx = 2/25. We observe con-

vergence of both the contours and the velocity, although the rate of convergence is rather slow. A possible

reason for this can be the smearing of surface tension, viscosity and density.
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Fig. 14. Results at t = 0.5 of rising air bubble on four different grids.



0 1 2 3 4 5 6
0

1

2

3

4

5

6

WaterAir

Fig. 15. Initial state of falling droplet.

0 5
0

2

4

6
t=0

0 5
0

2

4

6
t= 0.02

0 5
0

2

4

6
t= 0.04

0 5
0

2

4

6
t= 0.06

0 5
0

2

4

6
t= 0.08

0 5
0

2

4

6
t= 0.1

0 5
0

2

4

6
t= 0.12

0 5
0

2

4

6
t= 0.14

0 5
0

2

4

6
t= 0.16

0 5
0

2

4

6
t= 0.18

0 5
0

2

4

6
t= 0.2

0 5
0

2

4

6
t= 0.22

0 5
0

2

4

6
t= 0.24

0 5
0

2

4

6
t= 0.26

0 5
0

2

4

6
t= 0.28

0 5
0

2

4

6
t= 0.3

Fig. 16. Falling droplet from t = 0 to t = 3.5, 0.5 contour of U.

E. Olsson, G. Kreiss / Journal of Computational Physics 210 (2005) 225–246 241



0 5
0

2

4

6
t= 0.19

0 5
0

2

4

6
t= 0.192

0 5
0

2

4

6
t= 0.194

0 5
0

2

4

6
t= 0.196

0 5
0

2

4

6
t= 0.198

0 5
0

2

4

6
t= 0.2

0 5
0

2

4

6
t= 0.202

0 5
0

2

4

6
t= 0.204

0 5
0

2

4

6
t= 0.206

Fig. 17. Falling droplet, close to surface.
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Fig. 18. Falling droplet, close to surface. 0.05, 0.5 and 0.95 contours of U.
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5.4. Falling droplet

Finally, a problem involving topological changes of the interface was studied: a small droplet of water

falls through air until it hits a water surface. The initial state is shown in Fig. 15.

As in the previous section, we set qref = 1.0 · 103 kg/m3, lref = 1.0 · 10�3 N s/m2, q1 = 1, q2 = 0.0013,
l1 = 1, and l2 = 0.016 and r = 7.3 · 10�2 N/m. By choosing lref = 1.0 · 10�3 m and uref = 1.0 · 10�2 m/s,

we get Re = 10, Fr = 0.10 and We = 0.0014. The discretization parameters were chosen as Dx = 0.06, Dt
by stability as in (17).

Results from a droplet falling is shown in Figs. 16 and 17. We see that in the air the droplet remains

quite circular. This is expected since on this small length scale surface tension is large. The horizontal

surface stays straight as the droplet is approaching. One might expect that the air under the droplet

would create a small bump on the horizontal surface. However, on this small length scale these effects

are too small to be apparent in the results. We also note that as the distance of the bubble and the
surface becomes close to the thickness of the interface, the droplet slightly attracts the surface. This

is a numerical effect due to the diffuse representation of interfaces. As the droplet hits the water, waves

propagating towards the wall are generated. Finally the waves are damped. We see that our method

has no problem dealing with the topological change of the interface. In Fig. 18, the three contour lines

corresponding to U = 0.05, U = 0.5 and U = 0.95 are shown. We note that the interface keeps it thick-

ness even as the droplet hits the surface.
6. Conclusions

We have constructed a numerical method for the advection of an interface in a divergence free velocity

field. The method is conservative and the thickness of the diffuse interface is kept constant. Our method is

easy to implement and the extension to three dimensions is straight forward. No special care has to be taken

concerning topology changes, since this is automatically incorporated in the method. We have used second

order approximations and numerical tests have also shown an actual order of accuracy of about two. Mass

conservation is significantly better compared to the standard level set method.
Since our method is based on a certain smooth level set function together with a set of differential equa-

tions, other numerical methods can easily be applied. For example, higher order accurate and/or finite ele-

ment discretization could be used. In this way, it should be possible to construct a conservative method with

order greater than two.
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Appendix A. TVD method for advection

The TVD method for the advection of U using the upwind scheme together with a piecewise linear recon-

struction can be summarized as follows.
A piecewise linear reconstruction of U is made. On each cell we have
Uðx; yÞ ¼ Ui;j þ sxi;jðx� xi;jÞ þ syi;jðy � yi;jÞ.
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The slopes sxi;j and syi;j are calculated by:
sxi;j ¼Lim
Uiþ1;j � Ui;j

Dx
;
Ui;j � Ui�1;j

Dx

� �
; ðA:1Þ

syi;j ¼Lim
Ui;jþ1 � Ui;j

Dy
;
Ui;j � Ui;j�1

Dy

� �
; ðA:2Þ
where Lim(x,y) defines the limiter. The Superbee limiter is defined as
Limðx; yÞ ¼
signðxÞmaxðjxj; jyjÞ if jxj=2 6 jyj 6 2jxj and xy > 0;

2signðxÞminðjxj; jyjÞ if jxj=2 P jyj or jyj P 2jxj and xy > 0;

0 if xy < 0.

8><>:

For the definition of other limiter, e.g. the minmod limiter, see for example [11].

The evolution of Ui,j is given by
dUi;j

dt
¼ � 1

Dx
ðF iþ1

2
;j � F i�1

2
;jÞ �

1

Dy
ðGi;jþ1

2
� Gi;j�1

2
Þ; ðA:3Þ
where the fluxes are approximated using the upwind scheme for the linear reconstruction defined by the

Superbee limiter:
F iþ1
2
;j ¼maxðuiþ1

2
;j; 0ÞU�

iþ1
2
;j þminðuiþ1

2
;j; 0ÞUþ

iþ1
2
;j
;

Gi;jþ1
2
¼maxðvi;jþ1

2
; 0ÞU�

i;jþ1
2
þminðvi;jþ1

2
; 0ÞUþ

i;jþ1
2

.

Here
U�
iþ1

2
;j ¼ Ui;j þ

Dx
2
sxi;j; U�

i;jþ1
2
¼ Ui;j þ

Dy
2
syi;j;

Uþ
iþ1

2
;j
¼ Uiþ1;j �

Dx
2
sxiþ1;j; Uþ

i;jþ1
2

¼ Ui;jþ1 �
Dy
2
syi;jþ1.
Finally, we discretize in time using an explicit second order TVD Runge–Kutta. We rewrite the system of
ODE:s in (A.3) as
d~U
dt

¼ Fð~UÞ.
~U is a vector containing all of the grid values Ui,j. The second order Runge–Kutta we used is defined by:
~U
� ¼ ~U

n þ DtFð~UnÞ;
~U

�� ¼ ~U
� þ DtFð~U�Þ;

~U
nþ1 ¼ 1

2
ð~Un þ ~U

��Þ.
Appendix B. Discretization of the Navier–Stokes equations

The incompressible Navier–Stokes equations we are solving are given by:
r �~u ¼ 0;

~ut þ ð~u � rÞ~u ¼ �rp
q

þ 1

qRe
r � l r~uþ ðr~uÞT

� �� �
þ 1

Fr2
~eg þ

1

qWe
eF sv.
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We discretize using an extended version of the method described in [14]:
unþ1

iþ1
2
;j
¼ uniþ1

2
;j þ Qn

iþ1
2
;j �

Dt
Dx

pnþ1
iþ1;j � pnþ1

i;j

qn
iþ1

2
;j

;
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i;jþ1
2

¼ vni;jþ1
2
þ Rn

i;jþ1
2
� Dt
Dy

pnþ1
i;jþ1 � pnþ1

i;j

qn
i;jþ1

2

with:
Qn
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2
;j ¼ Dt �uux � vuy þ

ð2luxÞx þ ðlðuy þ vxÞÞy
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qWe
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2
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2
¼ Dt �uvx � vvy þ
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qRe
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Fr2
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qWe
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2

.

The discretization of the surface tension is done in the following way. The divergence of n̂ is first approx-
imated as
r � rU
jrUj

� �
i;j

¼ 1

2Dx

ðUxÞiþ1;j

jðrUÞiþ1;jj
�

ðUxÞi�1;j
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 !
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2Dy
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jðrUÞi;jþ1j
�

ðUyÞi;j�1

jðrUÞi;j�1j

 !
;

where the gradient of U is calculated using
ðrUÞi;j ¼ ðUxÞi;jx̂þ ðUyÞi;jŷ ¼ Uiþ1;j � Ui�1;j

2Dx
x̂þ Ui;jþ1 � Ui;j�1

2Dy
ŷ
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jðrUÞi;jj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðUxÞ2i;j þ ðUyÞ2i;j

q
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Finally, we can calculate the surface tension:
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.

The other terms of Qn
iþ1

2
;j are discretized by:
ðuuxÞiþ1
2
;j ¼ uiþ1

2
;j �

uiþ3
2
;j � ui�1

2
;j

2Dx
;

ðvuyÞiþ1
2
;j ¼

1

4
ðvi;jþ1

2
þ vi;j�1

2
þ viþ1;jþ1

2
þ viþ1;j�1

2
Þ �

uiþ1
2
;jþ1 � uiþ1

2
;j�1

2Dy
;

ðluxÞx
� �

iþ1
2
;j
¼

liþ1;j uiþ3
2
;j � uiþ1

2
;j

� �
� li;j uiþ1

2
;j � ui�1

2
;j

� �
ðDxÞ2

;

ðluyÞy
� �

iþ1
2
;j
¼

liþ1
2
;jþ1

2
ðuiþ1

2
;jþ1 � uiþ1

2
;jÞ � liþ1

2
;j�1

2
ðuiþ1

2
;j � uiþ1

2
;j�1Þ

ðDyÞ2
;

ðlvxÞy
� �

iþ1
2
;j
¼

liþ1
2
;jþ1

2
ðviþ1;jþ1

2
� vi;jþ1

2
Þ � liþ1

2
;j�1

2
ðviþ1;j�1

2
� vi;j�1

2
Þ

DxDy
.
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To calculate q and l at cell faces we use:
ðqÞi;j ¼ q1 þ ðq2 � q1Þ � Ui;j;

ðqÞi;jþ1
2
¼ 1

2
ððqÞi;j þ ðqÞi;jþ1Þ;

ðqÞiþ1
2
;j ¼ 1

2
ððqÞi;j þ ðqÞiþ1;jÞ
and, respectively, for l.
We require ~u to be divergence free at tn+1, i.e., ðr �~uÞnþ1

i;j ¼ 0, where
ðr �~uÞnþ1

i;j ¼
uiþ1

2
;j � ui�1

2
;j

Dx
þ
vi;jþ1

2
� vi;j�1

2

Dy
.

This yields the pressure implicitly as
r � rpnþ1

qn

� �� �
i;j

¼ ðQx þ RyÞni;j;
which is discretized as
1

ðDxÞ2
pnþ1
iþ1;j � pnþ1

i;j

qn
iþ1

2
;j

�
pnþ1
i;j � pnþ1

i�1;j

qn
i�1

2
;j

 !
þ 1

ðDyÞ2
pnþ1
i;jþ1 � pnþ1

i;j

qn
i;jþ1

2

�
pnþ1
i;j � pnþ1

i;j�1

qn
i;j�1

2

 !

¼
Qn

iþ1
2
;j � Qn

i�1
2
;j

Dx
þ
Rn
i;jþ1

2
� Rn

i;j�1
2

Dy

 !
.

This linear system was solved using a direct solver for banded matrices. Alternatively some iterative method

such as a preconditioned conjugate gradient method or a multigrid method could have been used.
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